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Design of Desirable Airplane Handling Qualities
via Optimal Control

GERHARD K. L. KRIECHBAUM* AND RUSSELL W. STINEMANT
The Boeing Company, Seattle, Wash.

The technique known as implicit model following allows desired closed-loop characteristics of a system to
be included in an optimal control algorithm. Previous authors have used a model of the form ¥ = Lx, where x
is the state vector. The optimal control algorithm then computes the feedback which makes the system res-
ponse optimally close to the model. This paper extends this approach to include all desired handling qualities
by using the model % = Lx + NJ, where § is the vector of pilot commands. The algorithm which is derived
computes both optimal feedback and optimal feedforward from J to the controls. Algorithms are given for
both sampled-data and continuous control. General guidelines for choosing L and N are presented. An
example is given for the design of the landing approach control for a short takeoff and landing (STOL) airplane.

Nomenclature

A = square matrix of differential equation coefficients (air-~
plane)

D = matrix of differential equation coefficients of control
influence

F = optimal feedforward matrix

Gx =square symmetric matrix which determines x’G,.x
component of cost function

Gys = matrix which determines x'G.;8 component of cost
function

Gss = matrix which determines &Gss8 component of cost
function

h = rate of change of altitude (positive downward)

I = jdentity matrix

JJ. =cost function for discrete-time, continuous control,
respectively

L =square matrix of differential equations coefficients
(implicit model)

M = optimal feedback matrix

N = matrix of differential equation coefficients of command
influence (implicit model)

T = discrete time step (sampling period)

u = vector of controls (inputs to the airplane control sur-
faces)

uy,Uz,u3 = elements of vector u

vy = forward velocity

Vv = square symmetric positive semidefinite matrix (usually
diagonal) of control cost in discrete-time cost function

Ve = square symmetric positive semidefinite matrix (usually

i diagonal) of control cost in continuous cost function

14 = modified ¥, equal to '(W* + G+ V

V. = modified V., equal to D’W, D+ V,

w = square symmetric positive semidefinite matrix (usually
diagonal) of state cost in discrete-time cost function

W, = square symmetric positive semidefinite matrix (usually
diagonal) of state cost in continuous cost function

x = state vector of the airplane

X = time rate of change of x

Xm = desired X (in the implicit model)

Y1,¥2,¥3 = variables used to model control surface actuators
= vector of pilot’s commands

6.6 = pitch angle, rate, respectively

state transition matrix corresponding to matrix 4

L state transition matrix corresponding to matrix L
¢ = control transition matrix corresponding to matrix D
N = command transition matrix corresponding to matrix N
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Superscripts

.y = denotes transposition of (.), a transposed vector is a
row vector

(.)* =in discrete time equations, denotes the value of (.) at

time ¢+ 7, the same symbol without a superscript
denotes the value of (.) at time z.
(.)~* = denotes inverse of matrix (.)

Introduction

HE applications of optimal control theory to the design

of airplane control systems have increased considerably
in recent years. These techniques have well-recognized
value in the synthesis problem because they achieve direct
synthesis rather than synthesis through repeated trial and
error. Furthermore, optimization theory furnishes both
the gains and the structure of the control system.

Historically, airplane stability augmentation systems have
been designed to improve stability and control deficiencies of
unaugmented airplanes which the pilot deemed unpleasant
or dangerous. The criteria to which the systems have been
designed are often specified as acceptable handling quality
regions for the poles and zeros of the unaugmented airplane
transfer functions. In addition, classical performance criteria
such as overshoot, time to half amplitude, response time,
etc. have been specified. However, such criteria have been
found increasingly inadequate as a basis for augmentation
systems design for advanced aircraft.

In contrast to conventional control system design, optimal
control is based upon the minimization of a cost function,
subject to the constraint of the equations of motion of the
system which is to be controlled. Although various forms
of cost functions have been used in the past, (e.g., minimum
time, minimum fuel, etc.), the quadratic cost function has
been found to be most useful in the design of airplane control
systems.’~* The general form of a quadratic cost function
has been found most acceptable because for linear systems
there exists an analytical solution which may be solved
readily with comparatively modest digital computer capacity.
Furthermore, the control is linear and the method is readily
applicable to multivariable systems.

The particular form of the quadratic cost function, however,
has been under study by a number of investigators. The
optimum state regulator problem uses the state vector and
the control vector in the cost function and has been discussed
extensively in Refs. 5 and 6. The optimum output regulator
problem replaces the state vector in the cost function by the
output vector.*>2 i

The optimum state tracking problem has been formulated
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in Ref. 6. In this problem, the error between the state
vector and the command input vector appears in the cost
function and is minimized. The optimal output tracking
problem?® results in a system with output tracking in response
to input commands and optimal output regulation in the
absence of input commands. The basic difference between
the optimal state tracking and optimal output tracking prob-
lems is in the error to be minimized. In the state tracking
formulation, the error is defined as the difference between
the state vector and the command vector. In the output
tracking formulation, the error between the output vector
and the command vector is minimized.

To achieve the real design objectives more adequately, the
model-following optimization techniques were developed.®—3
These techniques employ the desjred closed-loop aircraft
response in terms of a set of state equations representing a
a model vehicle.

The model-in-the-system or explicit model-following
method!?® uses the desired model in the control system as a
prefilter ahead of the airplane. The optimal control employs
feedforward and feedback gains such that the augmented
airplane will follow the output of the model. The model-
in-the-cost function or implicit model-following method
uses optimal feedback gains to modify the unaugmented
airplane characteristics such that they approach the model
characteristics. In this method, the model is incorporated
into the cost function.

Previous optimal model-following methods have been
based upon the uncontrolled model dynamics only. This
has led to difficulties, when these techniques are applied to
system synthesis for desirable airplane handling qualities. It
is well known that airplane handling qualities® are not only
determined by the uncontrolled airplane dynamics, but also
by the airplane’s control characteristics. In order to allow
for control effects in the model, attempts have been made to
include the desirable control characteristics by adding com-
mand state equations into the model dynamics.® This
approach also has not always proved satisfactory.

This paper extends the implicit model-following technique
to include desirable control characteristics in the airplane
model. Equations for the continuous optimal control
system, as well as for the discrete optimal controller, are
derived. The usefulness of this new technique is shown by
applying it to the design of the controller for a STOL trans-
port.

Airplane Model Definition for Desirable Handling
Qualities

Most of the existing airplane flying qualities criteria are
specified in government or service specifications.!®** They
are written in terms of parameters which describe the stability
and control of the conventional unaugmented airplane.
Acceptable ranges are defined for the short period and phu-
goid responses in the longitudinal axes and for the Dutch
roll response and roll and spiral time constants in the lateral-
directional axes.

The effects of the control characteristics on the longitudinal
flying qualities are accounted for by including normal acceler-
ation response to stick deflection in the criteria. The desirable
airplane responses to lateral control inputs are specified in the
criteria for roll rate oscillations and roll rate requirements.

Any stability and control augmentation system which is
added to an airplane exhibiting undesirable or unacceptable
flying qualities has to be designed such that the dynamic
responses of the augmented airplane match the desirable
responses of the unaugmented airplane. Specification of
airplane flying qualities in this manner is often very undesir-
able because stability augmentation system dynamics are
important in the augmented airplane response and a compari-
son with the desirable unaugmented airplane is no longer
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possible. In addition, none of the presently existing specifi-
cations is in a form suitable for direct application to modern
optimal control techniques in systems synthesis.

In order to design the control system for desirable closed-
loop dynamics, as well as for good response to pilot com-
mands, the following model equation is selected:

%m = Lx -+ NS )

The vector x represents any airplane state vector for which
the augmentation system is to be designed. The pilot
command signals are the elements of the vector 8. The
matrix L contains the desired characteristics without pilot
commands. Desirable command characteristics are speci-
fied in the matrix N.

Because established criteria suitable for use in Eq. (1) are
not available, the L matrix is chosen such that all state variables
are decoupled and have a first order, exponential response to
a step input. The elements of the matrix N are selected such
that the pilot commands the desired state variables only.

Implicit Model Following

In the implicit model-following approach to optimal con-
trol design, the difference between actual and desired closed-
loop equations is made part of the cost function to be mini-
mized. The modeling is implicit in the sense that the res-
ponse is forced to be close to the specified model, without
actually performing on-board model calculations. Figure 1
shows the block diagram of an airplane control system design
by the implicit model-following technique. The matrices
A and D describe the given unaugmented airplane stability
and control characteristics, respectively. The feedback
matrix M and the feedforward matrix F are both determined
from the implicit model control system synthesis. Their
derivation is presented in the following section.

Derivation of Controller for Desired Handling Qualities

The airplane and control surfaces are represented by the
vector differential equation (derived from Ref. 12)

X =Ax+ Du 2)

The desired performance is specified by the implicit model,
Eq. (1).

The approach used is to first assume a discrete time
(sampled-data) controller. Later, the sampling period will
be allowed to approach zero to obtain the optimal continu-
ous controller. First, Egs. (1) and (2) are converted to dis-
crete transition equations. This is done by using Fath’s
method '* to diagonalize 4 and L, finding the diagonalized
transition matrices (see Ref. 15), and then reversing the diag-
onalization. Equation (1) becomes

Xmt =¢rLx+Yno ?3)
while Eq. (2) becomes
x*t =¢x -+ Ju @

AUGMENTED AIRPLANE

Fig. 1 System block diagram.
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The problem is then to find feedback matrix M and feed-
forward matrix F, with

u=Mx+ F3 %)
so as to minimize the cost function
J=3x* — XYW (xt —xa*)+u'Vu 6)

The summation in Eq. (6) is taken over enough time steps
to make M and F constant over the first few time steps.

Applying the fundamental relations of discrete dynamic
programming (see Ref. 16}, the optimal control is deter-
mined backward in time. At any step,

J=x" —x YW (x* —xp) +u'Vu+4J* @

At the last time step, J* is zero. Substituting Eqgs. (3) and (4)
into Eq. (7), with J* zero, expanding, and collecting terms,
shows that J* in general takes the form

T+ = x* Gt xt — X+ Gyt 8% 4 8+ Gt S (8)

where G..* is syminetric. Substituting Egs. (3, 4 and 8)
into Eq. (7), expanding, differentiating with respect to u, and
setting this derivative equal to zero, gives

[‘/‘,(W+ + G”J')iﬁ + Viu
=~ [WH(p —¢r) + G Plx +
W + b Gog* 5 ©)

It is here assumed that 6+ =8. Two interpretations of
this assumption are possible. First, it may be considered
equivalent to assuming that changes in 8 occur slowly. This
is reasonable when it is observed that model responses are
often derived for fixed & after an initial step. There is also
a stochastic viewpoint. Note that in actual operation, a
discrete controller must compute # from x and 8, without
any definite knowledge of 8. In this sense, assuming 6* = &
is equivalent to assuming that changes in & are uncorrelated
with present or past values of 8, so that 8+ =& is the best
estimate of 8*. The stochastic viewpoint for a continuous
controller is that the best estimate for o is zero

Let

V=d/(W*+ G+ V (10)
Then
M= -V [W*(p — ¢r) + Gux* ] an
F= V-2 [W*y+ 3Ges*] (12
Substituting Egs. (3-5, 8, 11 and 12) in Eq. (7) gives
J = X'Grux — X'Grs + 8'G2sd (13)
with

Gex = (¢ — Py WH(p — dr + YM) + ¢'Gx* (¢ + YM) (14)
Ges =(p —P) Wy — S F) + (M) Wiy —

& Gux " YF + (b + M) Ges™  (15)

Gss = ' W*(hn — pF) — 3F P Ges* + Gas*  (16)

If Eq. (11) is substituted into Eq. (14), it becomes apparent
that G.. remains symmetric.

Note that Egs. (11) and (14) may be iterated inidependently
of Egs. (12, 15 and 16) and that Egs. (11) and (14) do not
contain iy. This shows that the optimal feedback M is
independent of matrix N.

At steady state, Gu® = Gyx, Gxs™ = Gys.  Solving Eq. (15)
for G.;, and substituting this solution in Eq. (12) yields,
after some manipulation

F=V-3[I — (¢ — M) 1 — $.Y Wby )

Thus, if only the steady-state value of F is required, Eq. (17)
may be used rather than iterating Eqs. (12) and (15).
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For the continuous controller, the cost function is
Jo= L [ — iy Wil — %) + w'Vaddt  (18)

A comparison of Egs. (6) and (18), similar to that in Ref.
16, shows that

W=W,|T 19)
V=V.T (20)

As T approaches zero, ¢ approaches I+ AT, ¢, approaches
I+ LT, 4 approaches DT, and #n approaches NT. Sub-
stituting Egs. (19) and (20) into Eqgs. (11, 12, 14, 15 and 17),
letting T approach zero, yields, after some manipulation,

M= —V, 'D[WA4 — L)+ Gy (21)
F =V, 'D'[W.N+ 3Gxs] (22)
—Gxx = Gueld — DV." ' D' WA — L)] +
[A—DV."'D'WAA — L) Gy +

A—LY(W.— W.DV. '"D'W)A—L) —

GuxDV. ' D'G,a (23)
—Ghs =2A — LY[W.— W.DV."'D'W.IN —
2G.DV,"'D’'W.N + (A + DM) G.s 24)
F=V,'D[(A+ DMY]"'L'W.N (25)
where

V.=DW.D+ V. (26)

and where Eq. (25), like Eq. (17), is used to find the steady-
state value of Fonly. Egs. (21) and (23) are exactly the same
as those published previously by Gaul et al., Tyler’ and
Markland,® using the model

Xm=1Lx @7

Application to Control System Design

From a practical standpoint, the design computations
derived previously must be performed by a digital computer.
A computer program written for this purpose is described
below. The design of an optimal control for a short takeoff
and landing (STOL) aircraft is then given.

Description of Computér Program

A program has been written for the CDC 6600 digital
computer to perform optimal control design. This program
has the following features:

a) Inputs are made as convenient for the designer as
possible. Inputs include aerodynamic and structural ma-
trices, lift growth coefficients, actuator transfer functions,
functions to shape the gust power spectral densities, model
matrices, matrices of cost coefficients (W and V), and vari-
ances of gusts and measurement errors.

b) The program computes both continuous and discrete-
time optimal state estimators and control gains. The com-
putations for continuous control make use of Fath’s method,'*
which achieves very short running time by avoiding numerical
integration. The results for continuous control are then
used to start the computations for discrete control, at a point
fairly close to steady state, thus achieving short over-all
running time.

¢) System performance is evaluated by computing the
variances of the estimation errors, states, and controls, and
by computing selected frequency responses.

d) If the control must function at more than one flight
condition, the program computes the best fixed control over
the given set of flight conditions, using Stineman’s method.”
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Example of STOL Aircraft Control

The design methods of this paper have been applied to land-
ing control of an STOL airplane. The airplane state vector is

x=[v, hoo Y1¥2ys) (28)
and the control vector is
u=1[u; u, usl’ (29)

where u;, u,, and us are inputs to the elevator, throttle, and
spoiler actuators, respectively, and y;, y» and ys are states

used to model first-order lags for the actuators. The air-
plane characteristics are given by the matrices
—0.065 —0.1078 —15.47
—0.434 —0.57 —88.4
0 0 0
A=10.00072 —0.00418 —0.648
0 0 0
0 0 0
0 0 0
and
0 0 0
0 0 0
0 0 0
p=|lo o0 o 31
1 0 0
0 1 0
0 0 1

For the example being considered, it was desired that stick
deflection command vertical velocity without affecting
forward velocity, and that throttle deflection command
forward velocity without affecting vertical velocity. Since
forward velocity is nearly constant during landing, it is
equivalent (with a simple scale change) to say that stick

deflection commands flight path angle. The following model
has the desired characteristics:
L=
—0.2 0 0 0 0 614 5735
0 —-20 0 0 —9982 0 —169.1
0 0 0 1 0 0 0
0 0 0 —15 -—29.08 0 —2.836 | (32)
0 0 0 © —14.0 0 0
0 0 0 0 0 —5.0 0
0 0 0 0 0 0 —14.0
[ o —15.5]
~155 0
0 0
_ 0 0
N=| , 0 (33)
0 0
0 0
- 0 0 -

This model has the desired decoupling of forward and
vertical velocities. Note that the effects of the controls are
modeled in L in exactly the same way-as in 4. In other
words, the model does not attempt to change the control or
actuator characteristics. ,

The design obtained depends not only upon the model but
also upon the cost coefficients assigned to various parts of
the model. The first four elements on the main diagonal of
W are 10, 10, 0, and 1, respectively, with all other elements of
W zero. This attaches high cost to failure to match the model
equations for forward and vertical velocity. All other costs
are low or zero. It may be observed that the model response
to a step command includes zero pitch angle and pitch rate.

J. AIRCRAFT

However since no cost is attached to variations in pitch angle,
the optimal design will automatically select the pitch angle
that gives the best match to the desired forward and vertical
velocity. The small cost attached to pitch rate tends to
prevent extremely high pitch rates, but otherwise allows
essentially whatever pitch rate is best for achieving the de-
sired velocities.

The cost coefficients in matrix ¥ were chosen to limit the
amount of feedback through matrix M. To do this, hori-
zontal and vertical gust effects were added to the equations,
with gust power spectral densities taken from Ref. 10. The

0 0 614  5.735
0391 —99.82 0 —169.1
1 0 0 0
—1.657 —29.08 0 —2.836 (30)
0 —140 0 0
0 0 —50 0
0 0 0 —140

coefficients in ¥ were then chosen by trial to give the following
probable control surface action due to feedback through AM:

Control Deflection (10)
Elevator 5.7°
Throttle 10.9%
Spoiler 5.1°

The time response to a step command tends to fall short of
the desired response for two reasons. First, the cost function
contains the slopes of the states, rather than the states them-
selves. Hence, steady-state errors do not contribute directly
to cost. Second, the cost attached to control effort, needed
to limit M, also tends to reduce the feedforward matrix F.
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Fig. 2 Model and airplane velocity responses to step stick
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Fig. 5 Pitch and control responses corresponding to Fig. 4.

However, these factors do not affect the shape of the time
response, so the problem is easily overcome by making small
scale changes after observing the time responses.

Time responses are shown in Figs. 2 and 3 for a step stick
displacement, and in Figs. 4 and 5 for a step throttle displace-
ment. The figures show the improvement resulting from
the use of direct lift control. Whether or not the improve-
ment justifies the added complexity is left to the reader’s
judgment.

Conclusions

The technique of implicit model-following®® may be
extended to include the desired effects of pilot commands.
This provides a convenient means for including all handling
quality requirements in the control synthesis. That is, the
extended implicit model includes not only the desired stability
and damping for unforced response, but also includes the
desired response to pilot commands.

A longitudinal implicit model has been derived such that
all state variables are decoupled, and the desired airplane
responses to pilot inputs are easily specified.

The derivation of the optimal control with implicit model-
following shows that the optimal state feedback matrix is
independent of the desired response to pilot commands.
Therefore, the equations for computing the feedback matrix
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agree with previous derivations.*® The optimal feed-
forward matrix from pilot commands to the controls depends
upon all inputs to the problem.

A digital computer program has been prepared to execute
the design computations for optimal control. 1In the example
considered, this program was used to design the optimal
implicit-model-following control for an STOL airplane. In
this design, it was desired that vertical velocity be commanded
by stick position, that changes in stick position have no effect
on forward velocity, and that throttle changes have no effect
on vertical velocity. A model having these characteristics
was derived. The computed airplane responses using the
optimal control, were found to agree closely with the model.
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